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Fat-tail distributions of sizes abound in natural, physical, economic, and social systems. The lognormal and
the power laws have historically competed for recognition with sometimes closely related generating processes
and hard-to-distinguish tail properties. This state-of-affair is illustrated with the debate between Eeckhout [Amer.
Econ. Rev. 94, 1429 (2004)] and Levy [Amer. Econ. Rev. 99 , 1672 (2009)] on the validity of Zipf’s law for US
city sizes. By using a uniformly most powerful unbiased (UMPU) test between the lognormal and the power-laws,
we show that conclusive results can be achieved to end this debate. We advocate the UMPU test as a systematic
tool to address similar controversies in the literature of many disciplines involving power laws, scaling, “fat”
or “heavy” tails. In order to demonstrate that our procedure works for data sets other than the US city size
distribution, we also briefly present the results obtained for the power-law tail of the distribution of personal
identity (ID) losses, which constitute one of the major emergent risks at the interface between cyberspace and

reality.
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I. INTRODUCTION

Probability distribution functions with a power-law depen-
dence in terms of event or object sizes seem to be ubiquitous
statistical features of natural and social systems [1]. It has
repeatedly been argued that such an observation relies on an
underlying self-organizing mechanism, and therefore power-
laws should be considered as the statistical imprints of complex
systems. It is often claimed that the observation of a power-law
relation in data often points to specific kinds of mechanisms
at its origin, that can often suggest a deep connection with
other, seemingly unrelated systems. In complex systems, the
appearance of power-law distributions is often thought to be the
signature of hierarchy and robustness. In the last two decades,
such claims have been made for instance for earthquakes,
weather, and climate changes, solar flares, the fossil record, and
many other systems, to promote the relevance of self-organized
criticality as an underlying mechanism for the organization
of complex systems [2]. This claim is often unwarranted as
there are many non-self-organizing mechanisms producing
power-law distributions [3-6].

Research on the origins of power-law relations, and efforts
to observe and validate them in the real world, is extremely
active in many fields of modern science, including physics,
geophysics, biology, medical sciences, computer science,
linguistics, sociology, economics, and more. The present paper
contributes to the literature by proposing a methodology to
distinguish power-laws from a closely associated family, the
lognormal distribution. Indeed, contrary to what the extensive
literature would have us to believe, qualifying the tail of a
distribution as being a power-law is full of difficulties and
traps, leading to many incorrect claims.

Entering a heated debate on the nature of the distribution of
city sizes in the US, we show how a specific test can go a long
way toward improving the methodology to qualify power-laws.
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This statistical tool, the uniformly most powerful unbiased
(UMPU) test, is shown to provide a clear diagnostic, allowing
us to distinguish between the power-law and the lognormal
hypothesis, even when the data set is quite small. This method
should play a growing role in many fields plagued by similar
curses of undersampled tails.

There has been a recent surge in interest in the size
distribution of cities and firms and particularly in the exact
shape of the upper tail of this distribution and the implications
thereof. Many empirical studies as well as theoretical works
have provided evidence and support in favor of a power-law
distribution of sizes with a tail index close to one, i.e., Zipf’s
law [7-11]. However, some other recent works suggest that
the size distributions could be close to, or evolve toward, the
lognormal law [12-14]" in accordance with the pure Gibrat
principle of proportional growth [15].

Determining the exact shape of the tail of the distribu-
tion of the sizes of economic entities, such as cities or
firms, is of general interest for several reasons. First, as
we recall below, the shape can inform on the mechanisms
and generating processes of growth [16,17]. The two large
classes of theoretical models of the growth dynamics of cities,
purely multiplicative or multiplicative with an additive term,
can only be distinguished in their prediction for the tail
of the distribution of city sizes, as recalled below. Second,
the shape is necessary for many socioeconomical problems.
It impacts aggregate economic outcomes [18] and financial

In fact Cabral and Mata [12] consider an even broader model based
upon an extended generalized y distribution of the log size of firms
which encompasses the normal distribution as a special case. In such a
model, when the size distribution of firms departs from the lognormal,
it follows an exponentially dampened power-law.
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policies on macroeconomic outputs and behavior. There is
also the simple quantitative fact for the importance of the
tail: the tiny fraction of cities in the tail that is found to be
described better by the power-law, as shown below, account for
more than 50% of the whole population. Finally, specifically
comparing the lognormal to the power-law model, as often
done in the literature and discussed below, has important
statistical consequences since the former (respectively, latter)
distribution has all its statistical moments finite (respectively,
only a finite number of moments), which are characteristics of
qualitatively different variability. In particular, for the popular
Zipf’s law (corresponding to the Pareto distribution with
exponent equal to 1), standard statistical tools such as sample
mean and sample deviation are not applicable (the Law of
Large Numbers is invalid), whereas they are fully justified for
the lognormal law.

We stress that, so far, most researchers have essentially
considered only these two alternatives (lognormal and Pareto).
Past authors have provided many justifications for these
two competing models, some of which are recalled in the
section below on the generation process. Of course, if another
competitor appears, it can be compared with the two main
contenders using the statistical methods used here.

To provide an illustrative example of this endless debate
between the proponents of Zipf’s law and those of the
lognormal distribution, let us mention that, based upon the US
Census 2000 data, Eeckhout [13] reported that the whole
size distribution of cities is lognormal rather than Pareto.
This conclusion was obtained by use of the Lilliefors test
(or L-test) [19,20] for normal distributions applied to the
log-sizes of the cities. It is consistent with Gibrat’s law of
proportionate effect and is rationalized by an equilibrium
theory of local externalities in which the driving force is
a random productivity process of local economies and the
perfect mobility of workers.

In a comment on this article, Levy [10] argues that the
top 0.6% of the largest cities of the US Census 2000 data
sample, which account for more than 23% of the population,
dramatically depart from the lognormal distribution and is
more in agreement with a Pareto distribution. The bulk of
the distribution actually follows a lognormal but, due to the
departure in the upper tail, a x? test unequivocally rejects the
null of a lognormal for the largest cities. The nonrejection
of the lognormal by the L-test used in [13] is ascribed to
the fact that the relative number of cities in the upper tail
is very small (only 0.6% of the sample), and the L-test is
dominated by the center of the distribution rather than by
its tail, where the interesting action occurs. In reply to this
comment, Eeckhout [14] provides the 95%-confidence bands
of the lognormal estimates based upon the L-test and shows
that the tail of the sample distribution of log size is well
within the confidence bands, as shown in Fig. 1. The Appendix
describes the Kolmogorov and Lilliefors tests.

The origin of the disagreement between Eeckhout and Levy
as well as, more generally, between the supporters of each of
the two models, can be traced back to the following reason. In
statistical testing, one never proves “truth.” One cannot prove
that an hypothesis H is “right” or “correct.” One either rejects
or fail to reject H. The failure to reject H is not a proof that H
is the right model. Eeckhouts’ hypothesis H is the lognormal
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FIG. 1. (Color online) Non-normalized empirical complementary
cumulative distribution of city sizes of the US Census 2000 as a
function of city sizes (decimal log-log scale). The continuous (black)
line is the best fit to the lognormal distribution over the whole city
data set. The two (red) lines which fan out strongly in the upper tail
delineate the confidence bands generated by the Lilliefors test with
5% significance level, a two-sided goodness-of-fit test suitable when
a fully specified null distribution is unknown and its parameters must
be estimated. Note that the Lilliefors test statistic is the same as for
the Kolmogorov test, for the specific case of testing the fit of the data
of logarithm of city sizes with the normal distribution with sample
mean and variance. Eeckhout [14] chose a confidence interval of 5%
to show that the tail of the distribution is well within this “tight”
interval and to conclude incorrectly (see text) that the lognormal
hypothesis is not rejected. Regeneration by the present authors of
figure 2 of Ref. [14]. See the Appendix.

distribution (LN) on the whole range of city sizes. Levy
suggested a more detailed and more general hypothesis H*
that includes H as a particular case. Specifically, H* implies
that city sizes are LN distributed up to some threshold u, and
power-law (PL) distributed above this threshold. For # chosen
to exceed the maximum city size, evidently H* coincides with
H,i.e., H is a particular case of H*. Eeckhouts’ hypothesis
included two unknown parameters: the mean and variance of
the logarithm of the city sizes, whereas Levy’s hypothesis
includes two additional parameters: the threshold u and the
Pareto index « (thus, making a total of four parameters).
Levy claimed that the uppermost tail (observations exceeding
some threshold u) is distributed as a PL. But his conclusions
were not universally accepted (and, in particular, they were
rejected by Eeckhout), because Levy did not use the most
optimal statistical tests in his derivation. As a consequence,
statistical scatters of the uppermost observations could be
suspected as a possible cause for the deviation of the empirical
tail from the LN law and for its visual resemblance to the
PL. At this stage, we should already note a problem in the
logic of the rejection by Eeckhout [14] of Levy’s arguments.
Indeed, the Appendix shows that Eeckhout was not correct
when he used the Lilliefors test to support the null hypothesis
that the distribution of city sizes is lognormal in the tail range,
while failing to mention that the Lilliefors test at the same time
rejects the null hypothesis for the whole range of city sizes.
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Here, in order to provide a definitive answer and to close the
debate about the shape of the upper tail of the size distributions
of cities, we use the uniformly most powerful unbiased
(UMPU) test of the null hypothesis that the upper part of the
size distribution (exceeding some threshold «) is a power-law,
against the alternative hypothesis that it follows a (truncated
from below) lognormal law. We used the maximum likelihood
method to estimate the appropriate threshold u, separating the
LN from the PL and found # ~ 37 000 inhabitants. There are
about 1000 largest cities above this threshold, and they contain
more than 50% of the total city dwellers in the United States.
Thus, we unambiguously conclude that the distribution of the
1000 largest US cities follows a power-law. As to the lower
part of city size distribution (i.e., the cities smaller than the
threshold u), the truncated (from above) lognormal law is an
excellent model.

This article is organized as follows. We summarize in
Sec. II the properties that often make difficult the task
of distinguishing between the Pareto and the lognormal
distributions. While the Pareto and the lognormal distributions
have indeed distinct asymptotic tails—in contrast with the
Pareto, the lognormal is not regularly varying but rapidly
varying—the lognormal can easily be mistaken for a Pareto
over a range which can cover several decades as soon as
its standard deviation is sufficiently large (a few units is
sufficient). Furthermore, both distributions may be generated
by Gibrat’s law of proportional growth, with some additional
apparently innocuous but actually profound twist(s) for the
Pareto. In Sec. III, we use the uniformly most powerful
unbiased test of the Pareto distribution against the lognormal.
It enables us to find one reason for the disagreement between
Eeckhout and Levy, as resulting from the limited power of
their tests. More generally, using this uniformly most powerful
unbiased test, we confirm and extend Levy’s result, by showing
that the Pareto model holds for the 1000 largest US cities or so,
i.e., for more than 50% of the total human population and that
most firm sizes across the world are also distributed according
to a power-law. However, Zipf’s law, corresponding to Pareto
with exponent 1, is found incompatible with most of the data
samples. The Pareto index for the uppermost tail (about 1000
largest cities) is approximately 1.4.

II. WHY THE PARETO AND THE LOGNORMAL
DISTRIBUTIONS ARE DIFFICULT TO DISTINGUISH

A. Structural similarities and differences

In order to justify that Levy’s results are compatible with his
own, Eeckhout [14] asserts that both the Pareto distribution and
the lognormal distribution are regularly varying, which makes
their tail indistinguishable. We recall that a positive function
f(x) is regularly varying at infinity if there exists a finite real
number « such that [21]

. t-x

lim A ) =1“,
X—>00 f (x)

Pareto distributions are regularly varying. However, it is not

the case for lognormal distributions. Indeed, the lognormal
density reads

Vi > 0. (1)

1
f(x)=m';€ 07, )
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This limit behavior characterizes a rapidly decreasing function
at infinity. Therefore, Pareto and lognormal distributions
exhibit qualitatively different behaviors in their upper tails.
The lognormal density goes to zero faster than any Pareto
density. In this respect, they cannot be mistaken into one
another, provided that one has enough data to sample the tail.
However, writing the lognormal density as follows:
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we observe that the lognormal distribution is superficially like a
Pareto distribution with a slowly increasing effective exponent

1
a(x) = 51n (%ﬂ) (5)

Expression (5) allows us to make two points. First, as stated
above, it shows that the lognormal distribution decays at
infinity faster than any Pareto distribution, since the apparent
exponent o(x) diverges with x. Second, if o2 is large
enough, the apparent exponent «(x) varies so slowly so as
to give the impression of constancy over several decades in
x. Quantitatively, in the range X < x < AX, the apparent
exponent varies from «(X) to a(X) + 2('7—2 In A. For instance,
for o = 3.4, the apparent exponent varies by no more than 0.3
over three decades (A = 1000), as illustrated in Fig. 2.

In the case of the US Census 2000 data, with the smaller
estimate 6 = 1.25 provided in [13], the apparent exponent
varies by 1.5 units over just two decades. This is an indication
that a powerful test should be able to distinguish the two
hypotheses over a range of two to three decades corresponding
to the tail regime.
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FIG. 2. The lognormal probability density function with o =2
and 3 are close to linear over almost four decades both in abscissa and
ordinate in this log-log plot, in which an exact straight line qualifies
a power law distribution. With some additional noise, it would be
difficult to distinguish them from pure power-laws with constant
exponents.
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B. Generating process

Gibrat’s law of proportional growth is often taken as a key
starting point to understand the origin of the distribution of
city sizes (see the recent review [22] and references therein).
Considered as the unique ingredient, Gibrat’s law predicts
that the distribution of city sizes should tend to a lognormal
distribution, but as a more and more degenerate one as time
increases (here, the vocable “degenerate” refers to the fact
that all the realizations shrink to zero asymptotically). Indeed,
Gibrat’s law leads to model the growth of a given city as
following a random walk in its log size, which therefore never
admits a steady state distribution. Let us also mention [23],
that introduced a general class of self-similar fragmentation
processes generalizing Gibrat’s law, that converges in distri-
bution to the lognormal law, which therefore appears as a
robust attractor of a large class of processes.

The equation of city/firm growth embodying Gibrat’s law
is

Si,t =dar- Si,fflv (6)

where S;; is the size of city/firm i at time ¢ and a;, is the
random positive growth factor. Taking the logarithm of Eq. (6)
and iterating yields

InS;, =InS;,—1+n;,=InS;o+n1+n2+- - +ni
@)

where 7n;; = Ina; ;. Assuming (for a time) that terms 7, , are
ii.d. (independent identically distributed) random variables
with expectation A and standard deviation B, the Central Limit
Theorem of Probability Theory gives

InSj, ~t-A+12B ¢, (®)

where £ is a standard Gaussian random variable N(0,1). Of
course, the stationarity of the n;,’s should be verified by an
appropriate analysis. Assuming in addition that the stochastic
growth process for a typical city as a function of time is
equivalent to sampling the growth of many cities at a given
instant, i.e., that a strong form of ergodicity holds, expression
(8) ensures that the distribution of city sizes is lognormal, i.e.,
the variable 514 is N (0,1).

An apparently minor modification of Gibrat’s law (6) leads
to a bona fide steady state and, therefore, to a stationary
distribution. An example of such a minor modification, among
many other forms [24], consists in adding a small positive
random term ¢; ; to the right-hand side of Eq. (6):

Sii =ai; - Sii—1+ &iys, &)

where the factors a; , are, as earlier, positive random factors.
The term ¢;, > O prevents the small cities from becoming
too small and degenerate. In absence of &;,, expression
(9) is nothing but the random walk in log size leading to
the lognormal distribution obtained from Eq. (8). When all
the factors a; , are taken equal to a constant a, Eq. (9) reduces
to the well-known autoregression process. The necessary
condition for stationarity of the autoregression process is
|a| < 1. When the factors a; ; are allowed to become random,
with sometimes values larger than 1, it is not guaranteed that
a stationary distribution for S;, exists even when the series
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of terms ¢, , is stationary. Kesten [25] derived the necessary
condition for the stationarity of the process (9), which reads
E[lna; ;] < 0. Roughly speaking, this means that the “growth
rates” In a; , of the multiplicative factors should have a negative
bias to prevent the divergence of the process (9). Moreover, it
is proven that the limit distribution of Eq. (9) has a PL tail with
index « that is the strictly positive solution of the equation
El(a;;)*] = 1. The presence of the “minor excitation term”
&;.; ensures that the size distribution of cities switches for large
values from a lognormal to a Pareto law. Because the process
(9) with nonzero ¢; ; leads to a stationary distribution, if we
assume ergodicity, then the distribution of an ensemble of cities
at a give time is the same as that of the set of realizations {S; ;}
for a fixed city i as a function of ¢ for large times. Gabaix [9]
argued for the validity of the constraint E[a; ;] = 1, which then
leads automatically to Zipf’s law (o« = 1), but it seems that
this restriction is questionable. Zipf’s law is obtained more
generally as a result of Gibrat’s law for large sizes holding
together with a condition balancing the birth rate, random
growth, and possible death rate of cities.> While Zipf’s law
is quite fashionable, there are often departures from the value
o = 1. Infact, as we show below, the power index in the PL-tail
of city sizes is found close to 1.4.

The intuition behind the transformation of the lognormal
into the Pareto distribution, upon the introduction of the
apparently minor additive term ¢;, > 0 is the following.
Because of the stationarity condition E[lng;,] <0, in the
absence of ¢;;, the process S;, tends to shrink stochastically
toward zero, while exhibiting a more and more degenerate
lognormal distribution (here, the vocable “degenerate” refers
to the fact that all the realizations shrink to zero asymptoti-
cally). During this phase, a few excursions of exponentially
large sizes associated with transient occurrences of the growth
factor ag;, larger than 1 can occur with exponentially small
probability. The term ¢;, allows the process to repeatedly
exhibit the exponentially rare exponentially large excursions.
The combination of these two exponentials leads to the Pareto
distribution.? In sum, reinjection by &, ; and transient explosive
growth are the two key ingredients for the transformation of
lognormal into Pareto in this model (9).

As we have recalled, Gibrat’s law of proportional growth
yields lognormal distributions, while simple modifications of
Gibrat’s law for small sizes lead to Pareto distributions. In
order to understand the implications of our finding that the
tail of the distribution of city sizes is Pareto, we should
stress that the statement “Gibrat’s law of proportional growth
yields lognormal distributions” has to be complemented by
the remark that the lognormal distributions are not stable,
in the sense that, as the time increases and the system evolves,
the mode and mean of the lognormal distributions either
converge to zero or diverge to infinity. In contrast, the modified

’In the case of cities, death means falling below a moving threshold
for qualifying as a city.

3For the more realistic situation where cities are on average growing,
by an exponentially growing term ¢;, so as to represent immigration
or population fluxes across cities for instance, the same reasoning
applies once a change of frame has been performed with respect to
the exponentially growing ¢; , term (see [24] for details).

036111-4



TESTING THE PARETO AGAINST THE LOGNORMAL ...

Gibrat’s law for small sizes makes the dynamics stationary
when it corresponded to a lognormal distribution converging
to zero when the pure Gibrat law holds. In other words, the
modification of Gibrat’s law for small sizes leading to the
Pareto distribution invades all sizes.

III. TESTING THE PARETO AGAINST THE
LOGNORMAL DISTRIBUTION

A. Preliminary considerations on statistical
testing and UMPU test

Some comments on statistical testing and on the cor-
responding terminology are relevant to help introduce the
“uniformly most powerful unbiased test” used in the present
paper.

In statistical testing procedures, one typically considers a
sample of i.i.d. (independent identically distributed) random
values (xp,xs,...,Xx,), where the x;’s have the probability
density function (PDF) f(x|6) that depends on parameter 6
(6 may be a vector) belonging to some parametric space 2.
Due to the i.i.d. properties, the PDF of the whole sample is the
product f(x1]0)f(x2]0)... f(x,|0). There are two alternative
hypotheses on the particular value 6 that parameterizes the
PDF f(x|0) describing our sample:

(1) hypothesis H that parameter 6 belongs to some subset
Qpy, or

(2) hypothesis K that parameter 6 belongs to Qg , which is
the complement of Qy, i.e., Qx = Q\Qy.

For instance, H : 6 = 0; K : 0 > 0. In this case, Q2 is the
semiaxis 6 > 0.

A statistical decision (statistical test) is performed by using
some critical function 0 < ¢(x1,x7, ...,x,) < 1, defined on
n-dimensional spaces (corresponding to the sample space).
Specifically, the statistical decision is

(i) accept hypothesis K (i.e., reject hypothesis H) if

P(x1,x2, .. xn) = 1
(ii) accept hypothesis H (i.e., reject hypothesis K) if
d(x1,x2, ..., x,) = 0.

The cases where 0 < ¢(xy,x2,...,x,) < 1 correspond to
so-called randomized decisions. A randomized decision con-
sists in performing a supplementary random experiment and
accepting K with probability ¢(xy,x,, ...,x,) [i.e., rejecting
H with probability ¢(x;,x2, ...,x,)]. Nonrandomized tests
only use values for ¢(x,x2, ...,x,) equal to 0 or 1. Random-
ized tests are used [30] in situations when the critical function
¢(x1,x2, . ..,x,) takes intermediate values between 0 and 1,
which is often occurs for discrete random variables.

The power function B,(6) of the test ¢ is defined as the
expectation of ¢(xy,xs,...,x,) taken under the assumption
that the parameter of the distribution generating the empirical
sample is 6:

Bs(0) = Eglop(x1,x2, ..., x,)] = / : "/¢(X1,X2, ceXp)
X f(x110) f(x210), ..., f(x,10)dxy, ..., dx,. (10)

By definition, the power function B4(0) is the probability to
reject hypothesis H using the test ¢(xy,x3, ...,x,) with the
parameter value of the distribution generating the empirical
sample being 6.
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The problem is to find tests ¢ that maximize the power
By () for all values of & € Qg, under the condition B4(0) <
y for all 6 € Qy, where y is some small number that we
choose preliminarily as an admissible false decision level for
hypothesis H. Usually, y is taken 0.10,0.05 or 0.01. Test
¢(x1,x2, . ..,X,) is said more powerful than test ¥r(x;,x2,x,)
if

By(0) = By (0), for all

under the condition that both power functions take small
enough values on Qy, i.e.,

Bs(6) <y,
By(©) < vy,

The grail is to find the uniformly most powerful (UMP)
test ¢ that is more powerful than any other test. Unfortunately,
such test does not always exists. In particular, the UMP test
does not exist for the problem of testing the Pareto (PL)
distribution against the (truncated from below) lognormal (LN)
distribution. But, if one adds some very reasonable restriction
on the class of tests ¢, then sometimes it is possible to
find the UMP test in this narrower subclass. The restriction
that sometimes ensures the existence of the UMP test is
unbiasedness, which consists of the following. It is quite
natural to add to the restriction (12) the following restriction:

By(0) = v,

A test ¢ whose power function f4(6) satisfies conditions (12)
and (14) is called an unbiased test. The condition (14) is
natural, in the sense that, if it is not fulfilled, there will exist
parameter values 6 € Q (i.e., under hypothesis K) for which
the acceptance of hypothesis H is more likely than in some
cases in which H is true.

It turns out that, in our problem of testing the Pareto vs
LN distributions, it is possible to find the UMP test if one
demands the fulfillment of the unbiasedness conditions (12)
and (14). This test is nothing but the well-known maximum
likelihood ratio test, with insertion in the maximum likelihood
ratio of the maximum likelihood estimates of the unknown
parameters instead of the true values. This test is known in
the field of mathematical statistics as the Wilks test. It can
be proven (see [26,29,30]) that the Wilks test for the problem
of the Pareto vs LN distributions is a UMPU test. We can
state that the most optimal statistical test in this problem (in
the above-described sense) is the UMPU Wilks test. The test
statistic equivalent to the Wilks test statistic can be chosen
very simply: it is the sample coefficient of variation [the ratio
of the sample standard deviation (std) to the sample mean].
The (minor) problem that is left is to determine the power
function of the Wilks test. This problem can be solved either
by the saddle point method, or by Monte Carlo simulations, as
described below.

0 € Qk, an

for all
for all

0 € Qy, (12)
6 e QH. (13)

for all 6 € Q. (14)

B. The uniformly most powerful unbiased test

As summarized in the introduction, one essential deficiency
in statistical testing the LN vs PL hypotheses lies in the
limited power of the used tests (L-test and x>-test, among
others). While these tests are quite versatile, they are not
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always very powerful. For instance, figure 2 in [14] which
is reproduced as our Fig. 1 illustrates the lack of power of the
L-test in the upper tail of the distribution under the null of a
lognormal: the confidence bands derived from this test fan out
very strongly, which makes this test unable to decide if the
deviations observed in the data are genuine or fake. Of course,
the main reason for the decreasing power observed in Fig. 1
(figure 2 in [14]) is the shrinking sample size for the upper
ranks, but this does not remove the necessity of using the most
possible powerful test in such a situation.

The discussion following Eqs. (4) and (5) suggests that,
if the threshold u separating the LN from the PL is fixed,
then it might be possible to clearly distinguish between the
explanatory power offered by a lognormal distribution versus a
Pareto distribution for the US Census 2000 data sample, when
using a more powerful test for observations exceeding the
threshold u. The most general and efficient test that addresses
the core question, whether the Pareto law holds in the tail or the
lognormal model is sufficient, is to consider for observations
exceeding threshold u the two hypotheses:

H: Pareto distribution for values of x larger than some
threshold u# and

K:lognormal distribution also for value of x above the same
threshold u.

Specifically, we propose to test the null hypothesis that,
beyond some threshold u, the upper tail of the size distribution
of cities or firms is Pareto

o

H: fo(x;a) =« - a >0, (15)

W : 1x>u7
against the alternative that it is a (truncated from below)
lognormal

K: filx;a,y) = %%

2
—o In(£)— X [In( )2
=5GP g

(16)

where @ € R,y > 0, and the functions g(...) and G(...) are
the standard normal probability density function (PDF) and
cumulative distribution function (CDF), respectively. Note that
the threshold u# does not have to be equal to some data point
and can take any continuous value.

This is equivalent to testing the null hypothesis that the
upper tail of the log-size distribution of cities or firms is
exponential against the alternative that it is a (truncated)
normal. For this latter problem, Ref. [26] has shown that the
clipped sample coefficient of variation ¢ = min(1,c), which
is equivalent for this problem to the Wilks likelihood ratio
statistic, provides the uniformly most powerful unbiased test.
Here, c is the sample coefficient of variation of In(x /u) defined
as the ratio of the sample standard deviation to the sample mean
of the random variable In(x /u). The standard deviation is the
square root of the variance, and the variance is estimated using
the usual Bessel correction giving an unbiased estimator of the
population variance. Note that the use of the likelihood ratio
Wilks test corresponds to a “nested” test, i.e., the power-law
can be seen as a limit case of the lognormal distribution.

With the notations of the general theory of statistical
hypotheses testing used in Sec. III A, the clipped sample
coefficient of variation plays the role of a sufficient statistic
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for the optimal unbiased UMP test. The critical function
$(x1,X2, . .. ,x,) reads

@ (x1,x2,...,x,) =1 if & < h,; we reject PL and accept LN;
¢(x1,%2,...,%,) =0 if é > h,; we reject LN and accept PL.

The threshold 4, is chosen such that the probability that the
inequality ¢ < h,, holds under the null hypothesis (PL) is equal
to the (small) preliminarily chosen value y, typically chosen
equal to 0.1, 0.05, or 0.01.

The critical threshold £, of the test can be derived with
extremely high accuracy (even for very small samples) by
a saddle point approximation [26,27] or by Monte Carlo
methods. The Monte Carlo estimation is very simple and
proceeds as follows. First, it is necessary to generate M
samples distributed according to the standard exponential law
(with unit parameter), i.e., exp(—x), and of a fixed size equal
to the number of observations exceeding the given threshold
u of the real sample. The number M should be taken large
enough, say, M = 10000. Then, for each sample, the clipped
coefficient of variation (CCV) is calculated and compared with
that of the real sample. The fraction of exceedances provides
a good statistical estimate of the corresponding p-value of the
null hypothesis (PL).

In our problem, the p-value is the probability to reject the
null PL hypothesis when it is true. In the general notations of
Sec. III A, this probability was denoted as B4(0). The smaller
the p-value corresponding to the observed value of the test
statistic, the more likely is the PL hypothesis and the less
likely is the LN hypothesis. Usually, p-values equal to 0.10 or
smaller can be considered small enough for practical problems,
and sufficient to reject the alternative hypothesis.

From Fig. 1, one can see a deviation between the empirical
complementary distribution function and the LN fit, which
becomes important at about exp(10.5) ~ 36 000 inhabitants.
This suggests that the appropriate threshold u should be
somewhere near this value. In order to determine the most
appropriate value of the threshold u separating the LN from
the PL distributions, we suggest to use the maximum likelihood
estimation, which as seen below confirms the visual inspection.

The likelihood L for the whole sample is
L(-xla-XZa cee vxn|a7y9usa0) = Pnl : Ll : (l - P)nz : L27 (17)
where «,y are LN parameters for the lower part of the sample;
u is the threshold separating the LN from the PL distributions;
p is the probability of not exceeding threshold u; n; and n, are
the numbers of observations, respectively, below and above u
(with ny + ny = n); ap is the PL parameter for the upper part
of the sample; L and L, are, respectively, the likelihoods for
the lower part and the upper part of the sample:

Li(xi,x2, ..., x5 % < u,1 <k < njo,y,u)
=[] r&ile,y.u; (18)
xi<u

_ V8@V an(z)- [

- oI
fxla,y,u) ¥ G@/y) ix <u. (19)

036111-6



TESTING THE PARETO AGAINST THE LOGNORMAL ...

-1.979

-1.980

LIKELIHOOD L

-1.981

10% 10° 108
THRESHOLD u

FIG. 3. (Color online) Likelihood L(xi,x,,...,x,|a*, 8% u, o)
defined by (17) and following equations as a function of the
threshold u (decimal logarithmic scale) where (o*,8*,ag) are the
MLE of the parameters (o, 8,«). The maximum occurs at u™ = 37 235
inhabitants, providing the most appropriate estimate of the threshold
u separating the LN from the PL regimes.

The functions g(...) and G(...) are the standard normal
probability density function (PDF) and cumulative distribution
function (CDF), respectively:

Ly(x1,%2, .. Xn3 Xk > u,1 < k< nju,op)
= [ fotxilu.eo): (20)
Xi>u
u*o
SJo(xilu,o0) = aom,x >u. (21)

The likelihood L[x{,x2,...,x,lo* ), y*(w),u,o5(m)] is
shown in Fig. 3 as a function of the threshold u# where
[o*(u),y*(u),05(u)] are the MLE of the parameters (a,y,0),
which are functions of the threshold u#. One can observe that
L reaches its maximum at Inu* =11.0 (i.e., u* = 37235
inhabitants). The composite likelihood L has a plateau near
its maximum, so that thresholds within the interval 10.5 <
Inu < 11.5 have practically the same likelihood value, and
one can choose the lowest value Inu* = 10.5 (u* = 36316)
as providing the maximum number of observations for the
upper part of the sample (the Paretian domain), therefore
extending the domain where there is a relative scarcity of
observations for the estimation of parameter «. For threshold
u* = 36316, we obtain the following ML estimates of the
parameters: o = 1.094; y* = 0.581; 05 = 1.161. There are
977 observations exceeding this threshold u* = 36316.

C. Distinguishing Pareto tail and lognormal distribution
1. The distribution of city sizes in the US Census 2000 data

The p-value for testing the LN vs PL distributions for
observations exceeding this threshold u* = 36316 with 977
observations, as determined in the previous subsection by
maximum likelihood, is equal to 5% and remains smaller
than 5% for larger population thresholds. Thus, we can state
that, for the tail of city size distribution (with 977 largest
cities, containing 56.85% of the whole population summed
over all cities), the hypothesis LN should be rejected, and the
hypothesis PL should be accepted.
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FIG. 4. (Color online) The left panel depicts the p-value of the
test of the null hypothesis that the upper tail of the size distribution
of cities is Pareto against the alternative that it is a (truncated)
lognormal as a function of the rank (decimal logarithmic scale),
where cities are ordered by decreasing sizes. The right panel depicts
Hill’s estimate of the inverse of the tail index for the Census 2000
data (blue upper curve) and for ten samples drawn from a lognormal
distribution with parameters p = 7.28 and o = 1.25 (red bottom
curves) as a function of city ranks (decimal logarithmic scale). The
two dashed (respectively, dot-dash) curves provides the confidence
bands at the 5%-significance level (respectively, 1% level) derived
from the UMPU test that the tail index o = 1 against a two-sided
alternative.

The left panel of Fig. 4 depicts the p-value for the reverse
test of the hypothesis H (PL) versus hypothesis K (LN), as
a function of the lower threshold u expressed in terms of
the rank of city sizes of the US census 2000 represented in a
logarithmic scale. The p-values have been calculated using the
saddle-point approximation [26,27]. Extensive Monte Carlo
simulations, performed as explained in the previous section,
reproduce basically the same results. Figure 4 indubitably
confirms again that one cannot reject the hypothesis that the
size distribution of the 1000 largest cities or so, which include
more than half of the total population, is Pareto. This confirms
and makes more precise the claim in [10]. For larger ranks
(smaller thresholds), the p-value becomes very small, which
leads to the rejection of the Pareto distribution, and the need
for the lognormal distribution to describe the set of smaller
cities. This explains Eeckhout’s results [13].

The right panel of Fig. 4 depicts Hill’s estimate o~! of the
inverse of the tail index « of the Pareto distribution (15) again
as a function of city rank. This estimator is the best unbiased
estimator for the inverse of the tail index* [28]. For the US
census 2000 data (blue upper noisy curve), the inverse of the
tail index is approximately constant and fluctuates around the
value 0.7 for ranks less than one thousand or so, confirming
the validity of the Pareto model over this range. For ranks larger
than one thousand, the Hill’s estimate o~ deviates rapidly,
confirming a deviation from the Pareto model for the set of
smaller cities. )

In the right panel of Fig. 4, we also show Hill’s estimate o —1
for ten random samples drawn from a lognormal distribution
with parameters u = 7.28 and 0 = 1.25 (red curves). One can
observe the absence of a plateau, and therefore no well-defined

“It is not possible to get an unbiased estimate for «.
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exponent, thus disqualifying the Pareto model to approximate
data generated by the pure lognormal distribution estimated
in [13]. In contrast, the real curve obtained with the empirical
data exhibits a definite plateau in the range of ranks 10-10°,
corresponding approximately to a Pareto index o &~ 1.4. The
increase of ! with rank is the expected signature of the fact
that the lognormal density is rapidly decreasing, i.e., it goes to
zero faster than any power-law, so that its effective tail index
tends to infinity and its inverse is vanishing. Therefore, for the
highest ranks (largest cities), Hill’s estimator should converge
to zero for data generated by a lognormal distribution, just
as we see on ten curves shown in Fig. 4 corresponding to
lognormal samples.

The contrast between the US Census 2000 data and the
samples drawn from a lognormal distribution with parameters
pn =7.28 and o = 1.25 is striking and provides additional
evidence in favor of the Pareto distribution for the upper tail.
This makes clear that the Pareto and lognormal models are
distinguishable in their tail for the available US Census 2000
data sample.

2. The distribution of identity losses

In order to demonstrate that our procedure works for data
sets other than the US city size distribution extensively studied
here, we briefly present the results obtained for a completely
different data set, previously analyzed in Ref. [31], which
exhibits a power-law tail together with a lognormal-like shape
in the bulk of the distribution.

The data set consists in a catalog of personal identity (ID)
losses. ID loss event data have been thoroughly collected
by several independent organizations. As in Ref. [31], we
use the most complete data set from the Open Security
Foundation [http://datalossdb.org/ (06.01.2009)], that contains
956 documented events reported mainly in the USA between
year 2000 and November 2008. An event is defined following
the procedure described in Ref. [32]. For instance, the largest
entries in the data set are (i) the discovery and disclosure of
an attack over several years of the TJX Companies® with a
probable exposition of more than 9 x 107 IDs (end of the
event: January 2007), (ii) the Cardsystems’ hack impacting
4 x 107 Visa, MasterCard and American Express cardholders
(June 2005), (iii) America Online (3 x 107 credit card ID
exposed in 2004), and (iv) the US Department of Veterans
Affair (more than 2.5 x 107 of ID stolen in 2006). The
catalog provides also the involved organization, the date and
amount of loss (measured as the numbers of ID stolen).
Data are homogeneously sampled among various types of
organizations: business (35%), education (30%), governments
(24%), and medical institutions (10%).

Figure 5 shows the empirical complementary cumulative
distribution function (ccdf) of the ID losses over this catalog of
956 events. For events with ID losses smaller than the threshold
u* = 299 540 indicated by the vertical segment, the empirical
ccdf seems to be well fitted by a lognormal law shown as the
continuous thin line curving downward. For events with ID

5The TIX Companies, Inc. is a large retailer of apparel and home
fashions in the United States and worldwide.
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FIG. 5. (Color online) Empirical complementary cumulative dis-
tribution function (ccdf) (decimal logarithmic scale) of the ID losses
(decimal logarithmic scale) over the catalog of 956 events used
previously in Ref. [31]. The vertical segment indicates the threshold
u* = 299 540 above which the ccdf is qualified as a power-law.

losses larger than u* = 299 540, the empirical ccdf seems to
depart significantly from the lognormal law and is well fitted
by a power law tail shown as the straight line in this log-log
plot.

The threshold u* =299 540 mentioned above has been
obtained by maximum likelihood estimation using the form
of the likelihood function given by expression (17) and the
procedure described in Sec. III B. As in Fig. 3 for the city size
distribution, the likelihood L(x,x2, ..., x,|o*,y*,u,c) of the
set of ID losses is shown in Fig. 6 as a function of the threshold
u where (a*,y*,ag) are the MLE of the parameters (o, y,ap).
The set of ID loss events with losses larger than u* = 299 540
contains just 90 events. The ML estimates of the parameters
defining the lognormal regime below u* and the power-law
regime above u* are: o = 0.625;y* = 0.350; a5 = 0.667.
The later value confirms with better precision the previous
estimate oy = 0.7 &= 0.1 of Ref. [31]. Here, in addition, we can
state that the p-value for the null hypothesis of the lognormal
model is so small for the largest ranks (the p-value for ranks
larger than 300 reaches 5% and remains smaller than 0.01% for
ranks larger than 450) so as to lead to the conclusion that the
lognormal hypothesis should be rejected, and the power-law
hypothesis should be accepted.

Finally, Fig. 7 is the same as the left panel of Fig. 4 and
shows the p-value for the test of the hypothesis H (PL) versus
hypothesis K (LN), as a function of the lower threshold u
expressed in terms of the rank of the ID loss size represented
in a logarithmic scale. The p-values have been calculated
using the saddle point approximation [26,27], and confirmed
by extensive Monte Carlo simulations. Figure 7 shows that
one cannot reject the hypothesis that the size distribution
of the 300 largest ID losses, is Pareto. For larger ranks (smaller
thresholds), the p-value becomes very small, which leads
to the rejection of the Pareto distribution, and the need for
the lognormal distribution to describe the set of smaller ID
losses. This p-value calculation is a bit more optimistic in
its assessment of the range where the PL hypothesis holds,
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FIG. 6. (Color online) Same as Fig. 3 for the cyber-risk data set
consisting in a catalog of identity loss events. The maximum occurs
at u* = 299540 ID losses, providing the most appropriate estimate
of the threshold u separating the log normal (LN) from the power-law
(PL) regimes. The thresholds u in the abscissa are represented with a
decimal logarithmic scale.

compared with the ML estimate which gives a shorter PL tail
(rank 1 to about rank 90).

D. Pareto model versus Zipf’s law in the US Census 2000 data

Now that we have established that the tail of the size
distribution of cities is compatible with the Pareto distribution
(which should be selected as the most parsimonious hypothe-
sis), we turn to the question of whether this Pareto law is Zipf’s
law, i.e., whether the exponent is o« = 1.

First, the right panel of Fig. 4 shows the confidence band
at the 95% and 99% significance levels for the hypothesis
that the tail exponent of the PL is equal to 1 (Zipf’s law).
In other words, the upper and lower 95% confidence limits
(correspondingly, 99% limits) delineate the domain within
which the true value of the parameter o~! can occur with
probability 95% (correspondingly, 99%) under the assumption

0.6

p-VALUE
o
N

o
o

0 1 ‘ 2
10 10 10
RANK

3

FIG. 7. (Color online) Same as left panel of Fig. 4 for the catalog
of ID losses.
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FIG. 8. (Color online) One-sided p-value (decimal logarithmic
scale) as a function of rank threshold (decimal logarithmic scale),
testing the hypothesis that the tail exponent of the Pareto distribution
is compatible with Zipf’s laws that @ = 1. The p-value is defined as
the probability of exceeding the observed index estimate under the
hypothesis that Zipf’s law holds, i.e., that o = 1.

that the city size distribution follows Zipf’s law, i.e., o = 1. At
the 95% significance level, Zipf’s law is rejected, except for
the 20 largest cities.

Figure 8 improves on this statistics by plotting the p-value
defined as the probability of exceeding the observed index
estimate (one side-test) under the hypothesis that Zipf’s law
holds (index equals to unity). For rank thresholds larger than
20, all p-values are smaller than 0.05. For rank thresholds
larger than 16, all p-values are smaller than 0.10. We are thus
led to conclude that Zipf’s law cannot be accepted to describe
the tail of the distribution of city sizes in the US census studied
here, whereas a larger exponent approximately equal to 1.4 is
significantly more likely.

IV. CONCLUDING REMARKS

We have proposed the uniformly most powerful unbiased
(UMPU) test between the lognormal and the power-laws, as a
general statistical tool to use systematically when researchers
encounter a fat-tail probability distribution function. Because
the power-law model is often argued to be a general property
exhibited by natural and social complex systems, and because
the lognormal distribution is also ubiquitously associated with
proportional growth processes with fat-tail properties which
make it difficult to distinguish from the power-law especially
in standard log-log plots, the UMPU test should become in our
opinion the standard tool for assessing the nature of the tail of
empirical distributions.

We have presented a pedagogical introduction which moti-
vates and shows how the UMPU test between the lognormal
and the power-laws is constructed. We have introduced a
maximum likelihood estimation (MLE) of the threshold u
separating a possible lognormal regime in the bulk of the
distribution from a putative power-law regime in the tail. This
has allowed us to test directly the power-law versus lognormal
hypothesis in a predefined sample given by the data sizes larger
than the threshold.
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We have presented two applications on empirical data
sets. The first one consists in the distribution of US city
sizes, for which there is an unsettled controversy between
Eeckhout [13,14] and Levy [10], concerning the validity of
Zipf’s law. By using the UMPU test between the lognormal
and the power-laws, we have shown that conclusive results
can be achieved to end this debate. We can state that, for the
tail of city size distribution (with 977 largest cities, containing
56.85% of the whole population summed over all cities), the
lognormal hypothesis should be rejected, and the power-law
hypothesis should be accepted. However, we exclude the Zipf
exponent « = 1 and find that the Pareto exponent is equal
to 1.4 £0.1. A review of the mechanisms based on Gibrat’s
law leading to distributions with Pareto tails whose exponents
can deviate from the Zipf’s law value o = 1 can be found
in [22,33].

In order to demonstrate that our procedure works for
data sets other than the US city size distribution, we have
also presented a brief analysis of the power-law tail of the
distribution of personal identity (ID) losses, which constitute
one of the major emergent risks at the interface between
cyberspace and reality, which was previously analyzed in
Ref. [31].
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APPENDIX

Let us consider a sample of i.i.d. (independently identically
distributed) random variables with continuous distribution
function (DF) F(y) and sample size n. Let us denote the
empirical DF as F,(y). Then, the Kolmogorov distance D,,
defined as

D, = n'* - max|F,(y) — F(y)I, (A1)

has asymptotically the Kolmogorov distribution, indepen-
dently of F(y). Assuming the validity of the Kolmogorov
distribution for D,,, i.e., that n is large enough, the quantile g,
defined by

P{D, <¢Ip}=l7,

can be determined easily for any desired p, e.g., p = 0.95.

The inequality D, < g, is equivalent to the following chain

of two inequalities:
qp

1—F(y)—m <l-FQ) <1-FQ)+

(A2)

qp

pYER for all y.

(A3)
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Using (A2) and (A3), we get

qp
nl/2

P{I—F(y)— <1—Fn(y)<1—F(y)+q—p}=p.

nl/2
(Ad)

We can interpret (A4) as a confidence interval at the confidence
level p for the empirical tail 1 — F,(y). Taking the logarithm
of the right and left sides of the inequalities in (A4), we have

q
P{ In (1 — F(y)— nl—’/’2>
(Inf1 — F,(»){In (1 — F() + %)} =p. (A5)

It is clear from (AS) that, when the tail 1 — F(y) becomes

equal to or less than %, the true log-tail In[1 — F(y)] deviates

from In[1 — F(y) &+ ] very strongly, since the term 1 —
F(y) becomes less than the term n% leading to a divergence
of the logarithm. Hence, we can say that the very tail 1 —
F(y) cannot be distinguished well on the “background” of the
constant term n‘%. This “eclipse” occurs for y satisfying the
following condition:

I - Fy) = c2r

n1/2 ’ (A6)

where c is some constant, e.g., ¢ >~ 2.

The Lilliefors test modifies the Kolmogorov test in the situa-
tion when the theoretical DF F(y) is the Gaussian distribution
function G(y|m,s) with unknown parameters (m,s) that are
replaced in the equations used above by their sample estimates
[sample mean and sample standard deviations (std)]. In
accordance with above remark, the efficiency of the Lilliefors
test becomes very low as 1 — G(y|m,s) becomes smaller than
Zn%. In other words, the Lilliefors test “works” efficiently
in the middle range, whereas it fails completely in the
tail range.

Applied to the city size distribution, we have n =
25356,Y = In(X), where X is a city size, m = mean(Y) =
7.2781;s = std(Y) = 1.7529. Using p = 0.95, the theoretical
0.95 quantile for max |F,(y)nG(y|m,s)| is equal to 0.0057.
The observed value is max |F,(y) — G(y|m,s)| = 0.0190.
Under the null Hy hypothesis (lognormal distribution of city
sizes), the probability that max |F,(y) — G(y|m,s)| exceeds
0.0190 is less than 0.001. Thus, in accordance with the
Lilliefors test, we should reject Hy. Thus, Eeckhout was
not correct when he used the Lilliefors test in order to
support Hp in the tail range and did not say that this
test rejects the hypothesis Hy on the whole range. Indeed,
detailed observation of Fig. 1 shows that the 95% confidence
interval covers the empirical DF F,(y) in the tail range,
but there are some other places along the distribution for
which the empirical DF F,,(y) goes out of the 95%-confidence
interval.
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